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We interpret the (formal) postulates of measurement in quantum theory in
terms of measurement procedures that can be done in the laboratory (at least
in principle).

1. INTRODUCTION -

In 1969 Lamb published an article®® in which he expressed his dissatisfaction
with the available discussions of quantum mechanical measurement; he
claimed that they are “either too vague” or ““too formal and unphysical,” and
then continued, “in discussion of the measurement of some dynamical vari-
able of a physical system I want to know exactly what apparatus is necessary
for the task and how to use it, at least in principle. I am not satisfied with
hand waving or with formal logical scheme involving black boxes™ (p. 23).
Then he pointed out that in order to generalize Bohm’s analysis® (which
is not formal and unphysical) for any real dynamical variable A(x, p) we
should be able to realize Hamiltonians that are general functions of x and p.
This is not a trivial demand, because, as is well known, the potentials that
“nature provides® are very restrictive in the variable p.

The realization of thistype of Hamiltonian was suggested by Aharonov
and Lerner™-2 and it is our purpose here to give the operational recipe
that follows from their prescription. This will be the recipe for the measure-

! Department of Physics, Tel Aviv University, Ramat Aviv, Israel, and Department of
Physics, University of South Carolina, Columbia, South Carolina.

? Department of Physics, University of South Carolina, Columbia, South Carolina.

® For a brief review suitable for our purpose see Ref. 3, Appendix 1.

121

NN1E€ ON1Q/01 1INV ATAT SN ANIN ~n 100



122 s e et Aharonoy and Vardi

ment of any dynamical variable to which there corresponds a Hermitian
operator with discrete eigenvalues (and we assume, for simplicity, that any
degeneracy has been lifted).

2. THE RECIPE

SR . P

“Von Neumann’s conceptlon of the measurement problem became the
framework of almost all subsequent thedriés of measurément.”®

Bohm® clarified some of the unpleasant features of this approach? by
giving a detailed analysis of the measutement of spin by means of a Stern -
Gerlach experiment. Both von Neumann's approach and Bohm’s analysis
are in the background of our presentation, which follows.

The measurement of a dynamical variable A(x, p) will be achieved
by correlating the eigenvalues (of the Hermitian! operator that corresponds
1o the above dynamical variable) to the" spafial coordinates of a measuring
device (obviously, the coordinates of this device are macroscopically dis-
tmomshable)

In this approach a localized free particle will stand for the measuring
device, namely an incoming particle (let us say in the X direction) will interact
with the system for a very short period of time by a coupling term of the
form 8(t — t,) A(x, p)Z, where § is the Dirac delta function and ¢, stands
for the measurement time, and Z is the cocrdinate of the incoming particle
(perpendicular to the incoming direetion). This js an impulsive interaction!®
and therefore the Hamiltonian of the system for a short time is essentially
the above :coupling term; this .term is “responsible” for the “deflection™
of the incoming particle accordmg to the values of A(x, p), as can be seen
from the followmg P : v :
F,=p, = —aH/az =8t 1) A, p) ('1)
it complete analogy to the spin case.®® The difference is that we still have
to specify how to prepare in the laboratory (at least in principle) a force field
of the quite general form 8(t — t,) A(x, p),® while inthe spin case (or angular
momentum) there is a well-known procedure.'® :

Aharonov and Lerner have shown'® that a “respectable” Hamiltonian
(quadratic in the momenta) of the form: :

H = (2|)[(ps — y[2)* + (py + x[2)?] + A(x, y) ()

? See Ref 5 for further elaboration and clarlﬁcatlon of von Neumann’s approach to
measurement.

5 We shall also take into account the fact that, in general, A(x, p) is not a constant of the
motion.
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will generate, in the limit Q2 — o, the dynamics associated with the Hamil-
tonian /7 = A(x, p), where the function A4 is related to the function 4 as
follows (see Appendix): '

A6, ) = [ A= xo, 5~ ) expl=(xt + D)l dxydyy ()

This means that we can *‘mimic’ the force field given by (1) by the above
prescription, and the incoming particle will “see” a force field as ifproduced
by the dynamical variable A(x, p).

The following Hamiltonian will allow us to tie together von Neumann’s
prescription and Bohm’s analysis:

XU+ A s — W A )z Q)

H = H, +
where Hy, = 1Q[(p, — 3P + (p, + $x)?] and Q2 — co. This means that
until the time of measurement ¢, ,% we imitate the:tinie evolution of A(x, p)
as dictated by a Hamiltonian of the form H = p2/2m + U(x); at the time of
the measurement the measuting device (which is the fre¢ particle, described
by H = II?[2M) “sees” the force field 8(1 — #,) [H, -+ A(x, )], which is
equivalent to the force field 6(t — ¢,) A(x, p), and for ¢ > t, we concentrate
on the “deflection™ of this particle, in analogy to the measurement of spin
or angular momentum.®

3. CONCLUSION

We have shown that it is possible to “manufacture” a physical system
that is equivalent (essentially in every aspect) to a system described by a
Hamiltonian H = p%/2m 4 U(x) for the purpose of measuring any variable
of this system. The measurement is performed on the “replica,” but the result
is as if the measurement was made on the original.? In other words, we have
found a way to imitate the “kick” that a measuring device would feel (and
register) if it were coupled tp the system.

Quoting Lamb once more, we have shown “that the usual textbook
assumptions about measurement have meaning” (Ref. 1, p. 28).

¢ The preparation of the state | 4(0)>, which comes even before this stage, can be done,
for example, as suggested by Lamb‘® or, if we follow our method, by measuring the
projection operator | (0)> (f(0)].

" This can be generalized to the three-dimensional case without much difficulty.
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APPENDIX

Aharonov and Lerner have recently shown® that a gauge-type coupling
can be the basis for a renormalization phenomenon in which ordinary confi-
guration space becomes effectively canonically conjugate. Their basic Hamil-
tonian is of the form

H = (22))(pz — yI2)* + (py + xI2)] + V(x, y) (A1)

Note that the first term in this Hamiltonian describes essentially the two-
dimensional motion of a charged particle interacting with a constant, uniform
magnetic field in the z direction. Then, after introducing the definitions

x=X+8, y=jy-+3dy (A2)

where
X=3%x—py,; Ox=lx+p; F=w+p; =4y—p,
They rewrite their basic Hamiltonian as follows:
H = 3Q[(6x)* + (8y)*] + V(X, ) + *‘perturbative terms” (A3)

where
V(%) = [ P&~ x0, 7 — 30 expl—(xo? + 3ol dxydy,  (A4)

They note that [X, y] = i#4, and that V(X, §) commutes with the first term in
the Hamiltonian (A3) [this follows from the definitions (A2)].
The ““perturbative terms’ are terms of the form

[eias:n _ <eiu6x>] elo® ( A 5)

where the expectation value is taken in the state N = 0 [ | N) are the eigen-
states of the two-dimensional oscillator in (A3)]; the term in square brackets
in (A5) obviously has zero expectation value in the N = 0 state; it is also a
bounded operator, so that, regarded as a perturbation, it gives corrections of
order 1/£2, and for 2 — oo these corrections are negligible; therefore the
finite excitations of the system will have the spectrum that belongs to the
operator V(X, y). This means that if we wish to realize a Hamiltonian of the
general form H(x, p), we shall choose the function V(x, y) in (A1) such that
the function V in the variables X, y will be the same function as H in the
variables x, p. The relation between ¥ and ¥ (and therefore between ¥ and
H) is given in (A4), or also by the following equivalent prescription:
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Given the operator V(x, p), we use Weyl’s correspondence rule®:

Vix, p) = [ £(x B) expl—(iffi)oox + Bp)] do dB

(A6)
fle, By = Tr{¥(x, p) expl(i/)(cx + Bp)l}

in order to find f(«, B); with  this information we can write the potential
of Eq. (1) as follows:

Vx, %) = [ £ B) exple? + B2)/4h] expl—Gith)(ax + By)] doc dB

and it is simple to verify that by “renormalizi}lg” V [in the sense of Eq. (A4)]
we get

VE,5) = [ £, B expl—(ilh)(as -+ B7)] dee dB

as desired, because this exactly mimics V(x, p) as gfven in (A6).

ACKNOWLEDGMENTS

-

One of us (MV) is pleased to acknowledge a grant from the University
of South Carolina and the kind hospitality of the Physics Department of
Tel Aviv University during a time when part of this work was being com-
pleted.

REFERENCES

1. W. E. Lamb, Jr., Physics Today 1969 (April), 23.

2. D. Bohm, Quanlum Theory (Prentice-Hall, Englewood Chﬁ's N.J,, 1951), Ch. 22.

3. Y. Aharonov and E. C. Lerner, Phys. Rev. D 20, 1877 (1979).

4. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974), Ch. 11,
p. 474.

5. Y. Aharonov and J. L. Safko, Ann. Phys. 91, 279 (1975).

H. Weyl, Z. Physik 46, 1 (1927).

a



